If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6x^2-36=0
Domain of the equation: 6x^2!=0We multiply all the terms by the denominator
x^2!=0/6
x^2!=√0
x!=0
x∈R
-36*6x^2+1=0
Wy multiply elements
-216x^2+1=0
a = -216; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-216)·1
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*-216}=\frac{0-12\sqrt{6}}{-432} =-\frac{12\sqrt{6}}{-432} =-\frac{\sqrt{6}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*-216}=\frac{0+12\sqrt{6}}{-432} =\frac{12\sqrt{6}}{-432} =\frac{\sqrt{6}}{-36} $
| 5/x=30/6 | | 6+2(12-x)=4(x-1)-1.1 | | -4x-1+9x=3x+1 | | (12x-38)=(7x+32) | | 12-8=x+3 | | 65=b5 | | 2/9=3/2(4/9x-4) | | 10+r^2=110 | | 10+x^2=110 | | 4v^2+19v+14=0 | | x+7=12+18 | | 8b+3-106=2(b-2)+3 | | 9+8=-17(x-2)+11+28x | | 1/3x^2-16=0 | | 9x^2−54x+88=0 | | -30+-3y=18 | | (158+4x)+(x^2+32)=180 | | -11-6=a | | 10n+20=6n | | (158+4x)+(x^2-32)=180 | | 9x2−54x+88=0 | | 180=13x+1+9x+3 | | -y/12=24 | | (158-4x)+(x^2-32)=180 | | 9+8=-17(x-2)+11=28x | | w+4/3+1/3=-1/6(w-7/2) | | (158-4x)+(x^2+32)=180 | | 102-8f=38 | | (9x-3)(5x+3)=0 | | 420=2n-1 | | 75+18z=453 | | x^2-4x+158+32-180=0 |